翻訳と辞書
Words near each other
・ Martinez v. County of Monroe
・ Martinez v. Court of Appeal of California
・ Martinez, California
・ Martinez, California beavers
・ Martinez, Georgia
・ Martinez, Texas
・ Martinfjella
・ Marting
・ Marting, West Virginia
・ Martingale
・ Martingale (betting system)
・ Martingale (collar)
・ Martingale (probability theory)
・ Martingale (tack)
・ Martingale central limit theorem
Martingale difference sequence
・ Martingale pricing
・ Martingale representation theorem
・ Martingrove Collegiate Institute
・ Martinho Campos
・ Martinho da Costa Lopes
・ Martinho da Vila
・ Martinho de Araújo
・ Martinho do Nascimento
・ Martinho Ndafa Kabi
・ Martinho Oliveira
・ MARTINI
・ Martini
・ Martini & Rossi
・ Martini (automobile company)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Martingale difference sequence : ウィキペディア英語版
Martingale difference sequence
In probability theory, a martingale difference sequence (MDS) is related to the concept of the martingale. A stochastic series ''X'' is an MDS if its expectation with respect to the past is zero. Formally, consider an adapted sequence \_^ on a probability space (\Omega, \mathcal, \mathbb). X_t is an MDS if it satisfies the following two conditions:
: \mathbb \left() < \infty , and
: \mathbb \left(| \mathcal_\right ) = 0, a.s. ,
for all t. By construction, this implies that if Y_t is a martingale, then X_t=Y_t-Y_ will be an MDS—hence the name.
The MDS is an extremely useful construct in modern probability theory because it implies much milder restrictions on the memory of the sequence than independence, yet most limit theorems that hold for an independent sequence will also hold for an MDS.
== References ==

* James Douglas Hamilton (1994), ''Time Series Analysis'', Princeton University Press. ISBN 0-691-04289-6
* James Davidson (1994), ''Stochastic Limit Theory'', Oxford University Press. ISBN 0-19-877402-8

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Martingale difference sequence」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.